Ôn thi tốt nghiệp THPT môn Toán - Lớp 12 - Đề thi thử tốt nghiệp THPT môn Toán năm 2025 của Lai Châu
{"save":1,"level":1,"time":"90","total":34,"point":5,"segment":[{"id":"4379","test_id":"514","question":"<p>Tr\u1ecdng l\u01b0\u1ee3ng c\u1ee7a 20 c\u1ee7 s\u1eafn trong m\u1ed9t lô c\u1ee7 s\u1eafn \u0111\u01b0\u1ee3c thu ho\u1ea1ch sau sáu n\u0103m tr\u1ed3ng t\u1ea1i m\u1ed9t c\u01a1 s\u1edf tr\u1ed3ng s\u1eafn Lai Châu có b\u1ea3ng t\u1ea7n s\u1ed1 ghép nhóm sau (\u0111\u01a1n v\u1ecb: gam):<\/p><p><span class=\"svgedit\"><svg height=\"60\" width=\"400\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>\\n<title><\/title>\\n<rect fill=\"#fff\" height=\"62\" id=\"canvas_background\" width=\"402\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>\\n<title><\/title>\\n<image height=\"78\" id=\"svg_1\" stroke=\"null\" width=\"405\" x=\"-3\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAcAAAAA5CAIAAAAurWxBAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAVGElEQVR4nO2dd0AUxxfH3+wVekekdyJIsYAIiggYG2pUFDXyI9gTY9cYWxL9WYnGEjWaGNtPjcZGUbGCJREbqBTpoohIl3Ycdxx3u78\/sADeCYfH7XK3n79gd+7d+87bezM7M7uDoh69AJoOAC85umbCsa7fbQjycTbSVcHril\/cOXGtwHfK1D5qZPvWCF56ctOUK57H9g\/Wx94c4qVF7nvkOS\/UDPvoJ5shfLYn8Pu4gI1\/L\/+M1SF+UgpeyvYtx4xmhYcYS1FFMgJ\/Gjlr1Ensu62\/T5cUoI646kSV9yNWLk\/2+u3HsO4qzU+N7mXZXqsKApNsBxQWzCjwy9kZp47NWbK+lI9pG9r37TdhfugUF4pkTwAAFSNjnYT9k4Me9nc3N1TDa0vKaoy8v1kkTfYEgAZOFQevragRAihBAlVzWzB\/\/L7IwzdGhvl3Ycj3u7EuDj6B\/ZCrjuQAdcBVJ8w8fYg\/6cjqgRZKEF6pQWQ7QENDQ9OZIAji3d\/MnUljSHRFGZjfM6ppjSsDCCFasjKghKoRatbplP9ADg0NDY2CQCdQGhoamnZCJ1AaGhqadkLPwlOMqmvr5+5PbQAAlsecA0t9VVr9RIcgykvLMXR21JTLl1FDs1wlU0KzfBWDQoqme6DUAq9Lv3r8Otf1i7FjR3tZkte8IZ3KmFUb48pwOXwXRTTLUzI1NMtVMSimaDqBUg+kae8XPGlS8ADrlusMeYmrPfRGH6t+fyDj2LcDzDXVjNzD9qXUts38B0YAz93pp4khhBBimoVGlBEAmJ7Pwnm6++f\/kS36dEFtQArN4tyVRMuib22KqzZ5SxajWYIyqaIsQbK443JXDG0R3ZoQSQhL7+5fPKaPla66+8\/ZjelRXMXJWDSdQDsP3Lvh83en8t\/9T5RHzxi0tHhqbNHrhz8ywj8PO1na+oqSlkYAoCZ2f9GiQpwgCIIQvjoa1KVxnQbDftpM\/f3fH34lrw6KONrurjg+KArw0WojWbJYZVJGWaxkycfJD7KUDouHqIxfN7i733\/TXRb\/\/bAgfuln2McqTpai5Z5A6wxTDg05snTcwe\/GHVrf+yWv8SiqfOx2ZdOYg8uHXzpvxst0i1oVdPC7sWeiDSS1EqJs380eq5aMDUwuVo5nAYiaf8IPqI4bpfdOrjB117KTRgvCpzhqqVuMXres+4XvNz8QSGkEQJRzcG+ld4C2mOKq\/Sf0S9++M+HjRjsOKd1tifiiH682EiW3x9222aBwkNvh8IfUp\/wcOGRT9fSrKRfXf+ltp6+KQSsVJzvRck+g6uVuoQk2tdbJsU6Pzww9\/Is9BwcAQq9XSkAAr4r9zH\/UKzXHbKOqz5JindKz1SU0tqg4zqHU5MmkXZd6GCvDOl6iMm7TUaMl89xU3uUSPCv6TLaOt7ctBgCAjL18rQoizqV95L5EjBEgqi+Hb714fI7vsBmbIjM4LepSpbe368uTR+LrZSynTUjvbvOPiy\/aWrWRJbmd7rbFBnWD3D6HWyDM2D79pySPzac3DtR7n85aqTiZiSbjFp5ZbWJXamgqBGCURYz668ybbibDrNLUuIYFACBkqXy00nCNUsHL4J0X+pgrQ\/YE4vXljaesvp\/txG5ysD7nyVPC0trkTQQxQ1NTyE\/PqcOf\/uqt47Dig16KWCOAdIbvefL8\/okVAcKzMz09p53KEzY9rebsYv3q+uVkIcgbadwVK1mCMknV9u5zJEmW1l1xmiUFk7JBls5h8Ve24M6enYlqA\/pUrutvpqll7jXtQGottB5nWYkmaQyUUea3Lq6bLgGERvq2MTGPVAAAEPGBNxgn1fXqr\/5XY0y478crUPUT6wqGqPiS++M09cbkK8izSbzg+uCCS1KKFjfTKW7XoAtHHUp4gNcYPT7iF7XbM+VZp30TAlESvT7aacVMh+bTlryaahGmqa3+tnvGZGBA1NbykP2Cu9U5mzzZbTECAJiKjqmTz4TvD9++vdnu0tffHMxvMjLEtDDrSuQkPqyQ8xCZdO5iYiWLVyap2t61xGRJltJd8ZolBZOSQZbWYbGS8awbscUqTr0CgrffzM2NmcE4NWPogiucVuMsK9GkTSIxbBJD1yR1YRLAN76+avjD4g+LoLp7PmdP2GbGeF34IeTIWR0cAAArOh38yzT\/ArtEvx76MVNm7TloWg\/AtnjNjQ489sPo42tG\/33MOj++17WtwXtWDDv1336ZKfZ3Dgw+OC8gm5Qb0U8FLzyz4Zr7qik2LWenVbU0MULYIHxzRRB1dXUE0tJSFzckLNFIM4OOX+9Y6nQ3KraiSbde3dBAQ1SQmyvX3kn73W2taFuqjRTJTWmqTJooi7fRhuOkKwYpHW4CXlZYBFZDQ4Y56qmqdvVdtX2OTfGZk\/cErVacjESTOAtPaPtdCZudr4YQXuR86gfvgg9GdJmOiZM3nh8eUIMIlbxHxiIAvNTt\/E6HanaR88BqnT45dnrqOfsGxb9AwODqGjUgAGSdErz20sSJBQzAqpLVHVZGTVzx2IqB8BKzZy874XQTURz9x749oZYMhBBCKkP2FfPOheqq9Nuay7Z3tUP5ecVvWlCi9GUBWDt\/Ju69ZZKNNG9+MctePfVFDU0vKaSipgKcqmp5DpV8gruSeF9UtdVqI0NyC6Rxt3UbrR6ngGKQyuEmIE0dbSQUit74znL16sPic2tFrVacjESTu4xJaDk1euLwKgwQL3HgkV1WvGZnCbZuHRuAwcYRQAOPjQPUP7DP4SCkWafOBED1qqoAfLPMB+r4mxfzEWwdrhoGTJYIAEC9VlsLMLaQiQAIloDXCRMoMp0dyyfeUn91lrHaF0er6u8ssWM6jR5vX3Lzn+c4AABecD++1CZ4dHdxnTbJRpqHHy988sxmiH+zdUEMTO4Lnj\/FXQm8LQqAtV5tJEhuwXtlbXC3FRttOU6+YpDO4fcwnP0DdF9cu9FYQUBwa6oYPbxcVVqvONmIJnsdKFbTe1XU5871AMzS6w6FEnsTCAgEAPxqVSEAMEVNtCM+py2PhCFFm29i9pi\/aXzhrjWn8uo4OcdX\/PI8aMtid2lHermZV07HZnMIov71k7PL58T5b5n9WdNfJ8Hn85Cmjg5F2p7W3G1D0VarjRzJ7Xa3DTYoG+T2OtwUjcErV3unb5iz82Eln\/M0YtXm3JC1U+yxVitORqLJTqAAoFEQGH7VzahNg7kaZtXqCADHCAAgGEIhADTomtZSQIb8QV2C9l9ZicI9DEwG\/am78cahoC4IiNKT4\/SQfsDOtLbc2uLV6ZEbJveyMLXtOWpdkufW48vc1ZsVaKiuqcPMbW0p0EMBSe6KlSxZmdhqawIpkqV1V5xmSTYoG2TpHJZ0ZTM\/mxsd+6Ph0ZHmuhbD9mqsubx7mB5Aq3GWkWhSfhhIwFcVNLldxyySJ6\/vUj6\/z9tOInrzklYcAQCBv\/kbB1Drm9LbwuVWuWY1H4CpwalByCizTz8BAIPAEQDCGz\/SaIZABAAQCG+0SeYTNbKBPfiPorqmBzR7zD6WNPtYkyPIaOLZytFxi5c+5YGzVmtGMNOg35OCfpf4haKX+YW4nV9vPfJaqNbdFSv5o8o+rLb3kCNZWnfFaZZkg7JBls5hyVc2pu+18K+HCz\/8go\/EWVai5Z5A6wzSY3rFxXarKvdRnZzq6V7dKEDd83rYQoMz5QAA\/EyX1CwGAKpOcsxKY2U91MYBiByHxMzMAY4vRmyIq1jZ7+Y2Ly7L8ZlO7oh1sc7aIMh1Sk5jEwDcZKfUTE79LSMcgCi3ePSvCbOwW6EIANd6etWmwiVXX8772Mgdbv6Df+9UTloTJDZ7Skl9dlaesd\/Q3uzWi5KIEkqWpeZOopiaYZZ7AlV\/3T04tntw7AcncJMJUaFlBAOA4fh4+sXH7044n\/g5qEk5VdcHM6OSX+cY1kDmymVV6kwAALbdk6\/OPfnqXaEtv3m\/\/8TJdaGy10FZNCw9h1l6ysaW8MndJMPgPwaS9E69tqKEkmWoubMopmaYqTG21QhWr9u1bSUZ9QaOrww61hsaED6K+MdqwXEvqndNZIjySVY+xSBL0Uo5+0LTFvCSiIMvxodP\/+hydsVC+SQrn2KQrWg6gVIPvPDCT5PGjZsUfovEZ6e4KYe2pg3bvNBVPj0TKmiWs2QKaJa3YlA80VS6hacBwAxGbThrVoIDAMPUmrzoiIoa3Jev7qkvjwaWIprlKZkamuWqGBRTNKL3he9o6H3hlQEllAxKqbqFZPoWnoaGhqad0AmUhoaGpp3QCZSGhoamndAJlIaGhqadUOQtOzQ0NDSdg6aTSExqzcLjqq\/u2BZzQNMxp5tNg+zsotePHPNKEMs838VV3q9uomfhlQEllAxKqRqhZp1Oit3CY3wtZBa3bsyhvQ51rZduMwKr6z+M\/WuvvUCPSzHBNDQ0nRjK5RPt\/te+3vhYJ9Uhmyszmw1J3bIYGRN3XfBQjl08aWho5APlEigAsB2SRk4vZFTKbHy2TvTad36CrW7nfyEoDQ0NlZDj81S4RureIQnPMUAEhgAnEACBEAGACBwhs\/SpizIAADh20bMm3nkF2oEc6\/WZWp+e4WvsY9YNuVcI2oERy2RikOoInkWsmr3y8O0XQpP+M7cf2jTKQuHfFMG5OMNp1IFX71tIzGjmpZf7hij2K4Z4WceXfrPqaPwrMO\/\/1cZ9WyY5qJLtUkdTn3Ny2Tc\/HLnzkjD1+vKn3VvCXDTIdUiO6YRglT40FzgnjFkbETJSkBvrlHTNFg0+P3XDFb8ejBcPGjeNYuQf9UtiZIxYkKwZ73Mr7dN\/+YwXR\/ySmRkj5qdo3JaJQapTl3DoaNno\/Yl5z29v9ni2I2zx6db3\/e3k4AUX71v9nlXdgBMEQRCi3G0DuvgN9pR2f6hOBv\/OqhErSkIiczm1L6K\/LFgS+NP9D\/a1VTDqH2xZc7vPL\/F5BY\/2BdYcnTFy0aUqki9uufbHWL3ujfsqX7\/Fnqwsrm3IlUEeDQAAHIuMqvQZhyOHTo2Zt+NJ7W1Lnjg7UlBjmV6VNvNw5NBpF+bvSOd8ukHKo9pz2g9f+1hoahi5T10W0q2+rKxW0RMooeo\/f9VIe20mAgDACy6ef+o\/YYiuYi\/RE2VfvigYt2RKT0MVtq7rtHkjq\/65W6DYg1QNj9LNV24L6WWkbdA9eOsfcx0Kz\/z9L8mNhhxv4RmcnpNSNcV2AbFqj7AUAACtPL9QIiXGN6qEzTJ+6RvyvA0bYH8U7edDvhY8Ou8XVYnrdM8ZObPoUw1SHoz1tudF1OTkYkHzJlgo+qgFw9Do\/du18aKL57L9vxmsQ6JD8gDrYmlevjXq4XqvvupAVL4s6Oo3w1yxI83ynjLl3T9sVw9X9j6MbMXyfKeUSLuLSNI5NUMuAKq4NOq3LRr99170zAj4fe34W1duzjsUb1bUd8fYwXlCwCySR4xkJUXaltRX9Vx89stRlc2zMSq\/MvToVrcXpSwcCOMZB5fNLSZyex+cPbTA\/dyCRfy4WWHhp2\/N2nnXSuGTKBC8wsTI7d+v53x7blRXxe6JtYAovXw+y3\/mYG2yHelokMmktfO2+wcOV434a3JB+O2Rx3f2Uewh3+bgpYWl2oO\/9SZZM9kJvCm4dvJp57JKs7znfOM+hQYY4mfY5pQAZpEQtiiPAYAXmZdZ35i+MJdVZZyw1yOvxUJ7ge2VTb2LnC6v\/nfn0s33TBAbcM2EXwPSSoWWA7INjPJcetfVJvhGndZX7PscAICG+JX9vUN+uZkRM9fvyyN5EpstxYMov3Iu3S94kCz2HaM6mv02Xjv1RcFaP+uASwEbvnZT\/H5BE0RPT5\/HFv04Rp\/k7gGVEihW3fub2IDQf\/o7aT2JsXmNAwBTKEAAuLYxlwGAmWX2H1SpY8JRQ0Bw1OpaDO1hXB0Dgn9n4N9HTFQHXJ86J5\/BtU5LVCGweg0dHIBQ1WhAwHxx17pW4TMoy2drWmHmv8eW+RsWR6\/dfV+Gz3RRG6Li6rl0v+AAZcifALzs2HvmqyP\/DNOPmuT1n+PPlCbMgL\/8a3PSuD0LnUmfKKRSAgXQ8UjtZWVweXlAsVWhAQYAIO45MQLgzZbxzWAWD90R4e\/CyPozODx4\/I1UFRFXjSdAACLm+2pGOFeFr+iTKgCAqRt18wnZdGpHkG5ZUanCtxhvqY47n+Y73l+TbD\/kQWXMtxOu+yz7avSMAw+SDvSNnzH5t6fKEWhe8p+7S8N2zupGevqkWAJlPd31n10bnDUmX\/jcjd+OrjnLImvsgd+XrEk2LO8WtdInX6NKT5sAwHAcAJBQgBFAqHSt1lb8tUxvQDrWNiZuvZyVZeOWmuvnUgeM9yN5aaB8ENz7+zTf3EwNAEDVPnT3+oFPbj6sJdurjqfh2dntN7otXTJAjxJj+yQlUBFGAAAgommTKbBMiDES4IyqLNukS9blOABgIi67HsdqSjREAEStVnUdxivR4hMADRqVFc2db7C4uOzzhFRV\/UH33e1xhAhM7XnfYRUYrlpTzgTAOBVqBMZxG\/FM4VcbNyKsyb28Ye29gB+n2ytJi1F783yqz\/iBSpE\/gekywLPo4Oq994t5QkHZwxOn03sGeCh611uQe2L5b\/zJc\/0MEQDRUJF2ctepbFKH+OWfQFkl992uRVhzCQBgPb\/Q7368YV1jGmWW2feuYQKj5JbLK8tUDwcBCA0en3Soyu\/zv23WIgDitevp7QOjfnauJQAEtpEr3F83zb+Ir+P2Sjtl0Pbh027ycgJX37VkCh3mRI\/25+Yd+zzu6KBbj3nd50SO9eXLXbI8EaZuG2SqzmKq6lr7fBult+LUtiHUaKo7nrp\/zif3G+erTrYf8gGzmHEyZoH6\/4LsNFV0e8y67f2\/iLl2lLqhlDWi3CMhg8K2b\/uPDQshhBDGNnTfwe9pR2r3gGqbymG8CjZTl8\/CAIRsTg2o6ws+uX5Q3SujktegbV1qoE3C8Cf9OjtlQAklg1KqbiGZaqNjuJr+2x4iU6ClLxObhLpZiY2ZTEzR0NDQvEeh+\/w0NDQ0HQmdQGloaGjaCZ1AaWhoaNoJnUBpaGho2omSrHChoaGhkQ1NZ+GVbhVCZwKvSL50NQOchgzvoU\/fKtCQB\/\/pjXOJ1Va+o\/qaUuuhDNIdo3+XMkKUF7EseOS4ubtuFQqh7vb1O5++Xh8vOrFk8k\/X6rvo0lGiIRPutY2hi0+U6BhSK3tSwbH\/A7wdlc6ZiAj1AAAAAElFTkSuQmCC\" y=\"-12.5\"><\/image> <\/g> <\/svg><\/span><\/p><p>Kho\u1ea3ng t\u1ee9 phân v\u1ecb c\u1ee7a m\u1eabu s\u1ed1 li\u1ec7u ghép nhóm trên (làm tròn k\u1ebft qu\u1ea3 \u0111\u1ebfn hàng ph\u1ea7n m\u01b0\u1eddi) là:<\/p>","options":["A. 3,3","B. 9,5","C. 6,7","D. 8,6"],"correct":"3","answer":"<p>\u0110áp án \u0111úng là : <span style=\"color:#27ae60;\"><strong>C. 6,7<\/strong><\/span><\/p><p><span class=\"svgedit\"><svg height=\"150\" width=\"270\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g> <title><\/title> <rect fill=\"#fff\" height=\"152\" id=\"canvas_background\" width=\"272\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g> <title><\/title> <image height=\"148\" id=\"svg_1\" width=\"262\" x=\"6\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAQYAAACUCAIAAAD+jhCXAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4nO2dZ0BTVxuA33uzCGGGJXuKCoKgCGJx4K6fW7FW62jrbuv8qh22tcPZzzprh6OuWuveqw4UFQVFUEAQkCEbWYEkZN3z\/QCUQEISCCGk5\/kl15Nzz3lz33PPPffeJwRCCDAYTD1kezcAg9EvcEpgMBgMRgkIIfq2+HHt3QztsCjgtDb6QgieB6ZkcMDyhW+fPJYW2lWP1CbjRpcKSmzd66GrDaWyuFa6Q\/FcU6JdhFDp1O+JnXErK2sIWRrXJ6uIZDgldfcrN5iZxqKA04AnTk1ARlYoa\/+C\/SunJPG0Wa8kbtzBzxddjGJxLFXng7YgTSrg6dgjny+\/GKXNhACx741Vy\/78pZfYstLwDiDD61FrIa0ej9u2ua+Nd2KMkfZqpWfe6EEO\/mXe6ihruvZqVQlZ6bNszYwJ5Vm3\/Wu0V6skPiSVFv3O9p+DnHSX3jpDl99Px4GdHfrJiUxkTkGNdsYMypRyuzh6xDMOTSvVaYTIYfyhYQlEtQyMtLN3QiDL678oysNCppXq9A21UkKUERx1vG9OCQOA4oScHB+RyQQAmVXGhfC4aDc+56XPmFv2mcMj79hKiHLf+XtDPBQOHmTeLxt\/\/M3JZsLmhV8+sGyHg4Pg3Zpy8pwTRSCCREARCAGQiASgEAlEUcCSQz0dKADjlK3f\/n68E7K5Zea\/NZCrhfs2gjtTj2wcUgZlQRuWvjeUp5U0o0qDLm0ML5IhICkCSEQRQFAECUARCCHu0APjhpcAgDB6xo5Fw0pReZBNqnZ2zet54fsP7+eD2chNK3+INlWjRknMnDXzRwh8Ts3e8ae3RZN4Vrk\/2DUmKZ9JWD98+783Oyk5JKm8gOv7B70so5EeNyLmP+I0u19JxoBzOwYVcZ71mhjpnB+a2eVMXy91T2hqhYjlGRM+NaXmQZ\/4a2F3Nyw\/educAgBaqeeYM\/7m1vTQM8H+hc4D86ojQ+Ov98yrUFKn1DnhliN35M55X7RLPgAAIc7yzaxJ67ds+8zvIllxofHX+qaS96Zu3DppWoo00b+wCgBAkjzmwlVZj4\/2h1gEXj3sJWn9bsWdb\/wcShvy5+jRVcm7R70Ut75GAAAQOqYnsFym7Ju2fnsw2yfhWt\/4+1TA6k3TV55zF3unZXAAAMSeN3f0JQcfHjOGp6Vd07MPTE2gR\/9n0U3OnYhbSUqOX7HnlbVjCurOIozM6z0FXpdmblGUDwBgmtndzTTxWt+Eu+585eMP6fiki5nzk2t9Ex7Zi5pvI2V1f1vE81zH9AuTD72\/c\/1mN7a1BhM8dSdOtE45nToXFCc6lIkdo7\/5xHHv2n7uFIDMyimLaycGAGCKGTQA5bumyh2lAb\/PW3Zbp5PpRjCfDVp5trM9BXJBlZoFnJ840yoOAMA4865ZwOYvB\/eqhMkpN7f3zKhK62raqn0KHgXyh69dMivZFK547Hsv6ZGxa6igVTXWIfGYuXtQ0CsSGA230q1TB6w8VXEFAEAYH1g9dP2SWcmmcNnjgDZ2zfNNrrgzZ99pLy6EBYw\/e8dX6JfAblSGMkvZ8sn1pLv+tX\/K7F6R96Zt\/dPXWunxzmBJCDV2zmSpmdOU4\/QNy4MKhEk9E5+YWYRG+Vio9zkA0OhagvQ8\/97gkD3\/C+CX9zzzxVSH3w95mgJBNEkCmXnWuYFPXoD9kKu9fKvqThlSy+wYG5Jp\/uho3+4j77twKQBm0f2QnFckApFN7yRG\/ODHycYmgZF9BxbIUkPvX\/USWKQETYzppM2VEsp86MUgrsKsRZYjT4fQKACB97SzxI3+lzdbiZivPKac825dPgCAcejxEZywmJ0zq8lSlwGHh\/tqJR+AtLnXf6TiBR\/S\/vbgMRQAsIPPhxMhD3+dUSGUWARcHBjS6l2bJQybJ4w79+7pcsrcJ3bUnIzG+SC1ebr500N\/uYqdXiZf7F\/inmuc60z3zRE99iuySLBjAwBQlW5PL4RkFTDYnR+GjEwxb3AMUqWdY86HFBI5AROjXBSeUurKmeTd6ZnPIxDBdwyLZz0PzSwiEUitekW7s9yTop2ECF6d96DZpQS\/I8q7GRKbSDDd4nt0r1SnixqN2DK7KVunpv+w95Sj+NnYA2uzlqy517StqbtmV9uYpF\/xrTzuIzqyJsyRAonTneWrT6Qmvbd3H3v\/d1smDX9769qhfiIbV9Oji2eniYWdghKcXWUFV\/rmHhqYPvExWUUQL\/ompI55lPvtF58\/ZShqSstgWJcrq400rTADoPL7\/Tn\/g6qIb6eM8jzz0YK9h8NG7vliuLftjVnbTj9hAK0g+KNIybUhKZlM7pB9738daStfnSz3rRNfzopJtBLLCNLj2PKjh53p9IJjK3ZucPf6\/otxZuO3z9pyZ8HauR+kaeGOB6vCXFktpMDMGkBm8+jrb06WXV34VWTOlq+O\/HfU44WrFs\/JKjuwdu1PXWUgsx59uLco9H60o8QhetzGncGu8pfLUru4DUtOn+9cIaQB7eWwQ0tGdaOkGcP3Lvgwt9f2xUurr89dt\/7YX3O3nXJtkBaSLM+XuaYiBEjCriqyMrJL7Gz89sElQ8rJxPHnntixEZXX\/+C8ua9Gfj\/VOWLzN2Oj4zb+9+vY2iiiSv8rG83MeL5xD7l3H7FXbL9ipWyCTVbbcp0PLpuUD1nDDsWNdGcdX7wwWSDo+WOs5+Bi1rOP\/jjkLqUnjj97m04iR1e7098yxvx6S824ani5RVT4rdj8dk8+AfTyy\/MO7neXNi4hcXxnx4zVR\/ztKFTtnZFCAyAqz884F8Wl+z7s7ljeeUAyp8Lv8ubhxTIguaXmRgiAsh3927RVv\/brIQOZVWZ5YsSaXyZNTCOBVv606yudrmoQ5deHx+WYZT9xYns8cXWiEN8jJdaKIgv7rzvQmQ4gs87MyfvPpgNdWaZ5F969k9joG6On7pp7N\/1FxMX3vvvrx0FeqAYBVTzg3LZelcw03wEl5r1jPS1N036feTdbF2vfVGGfO1ccqxO9C01zvf2KSGT8MtqvgkI2724e21sCQJYn2Nt9tGFMqISfOuDiUe9GkZbcjzh2wsXps3kbrix\/f0Y28AmgLGO3Tk8qlrr0i7Wyfdq9J6869p3TxxwannYZXjEhvcoAgOCmhrx\/6q3gMqb9K5M33TWN3\/5+XGGh77A0u9AnTkxa+TOv8tefZ2b2W71l6vwHliRZ89Qnt8mx1RCaXZlJ\/b9JszIzTn0tZJXXByf8uBTI3NNjzSkAqsTIYfJFV466cdP8u2FnDFn7Sy8HKSCT9J1Lzz2S3xUpMrEUAUjpdADEFAtJAPbzqO5CRBlZVJMABEfIJAhJYkBaBQGACAAgRBwunwQJnYEAEMuqjE0iBlNCAECNkVinC9\/IcsSRsTPPjpj4ouL2wOd5JAAhETEBgG7zypSOgFbcY1K0rXWJhSkCisPnNZoAUya25SQ\/8OK3Y3M4D8ds\/KszA0QxQWlVJGFSZUwHIARGRgA1nVNiTHXQLdL+zttLT4XPvepcHBT7wI4CQGKGFAEwyiy5MgDKavCVHq7lXDs+ACms5DRqEsktNSPZKb8svJEs8F28aVSQDPj+SQ+NESngmEsBwIhTQwAzO7p7tfqdEfom3jNDIGawgHQ+P+vAV4t\/OulUP1Mh2FUmbAC6hEYAErFEmsSIaPBVkNwHA0YWkMj42bHBRVKj1BiiywBlaz4KaMlwRXa6O3nNSRdjBBLHJ7ddlY\/jBKIIoNj8KjoA0BgNFm8otqBajQsqROj4yXXSJqn30Pyi35ede5Hv4kjVtqFpMQIAgGjyWD3lMmf9rPfSpDERuydv2X2oswARNZUcKQDQpQ1mqGRNldpDVmsgy71G3bPNnrx\/m7OtTxFZ2+amxQgAANSkmzSfY7M3nHWR+F9ZumX9slHZPKD4pkIxASClv5kuEhSfU6P+lyQ0qxaSQHHLCkgAyqxLkrujktUj1DS86iN1i\/jHjQXS5CFRkaEZ9PiuZhp8uIVncKPAv2eueGBOqtFqssqqE58AQDISAJCYIUMA7FKuJutiOkP0aNrPc+Y9tjj\/7qxUtjqLII1gFvb476ovD\/0c4mT55KelV5+QHMcSYwKAIhEAIIZUCgAiC4cyXcycBD7n537395WqAd+ccjNrwfEltRm8b9GpFe+OLeTdmLV\/dxdkXmRpRgGQFAUAIBXTESCWXYmZ3PwRAaFoFKmFU2ZuSgFlnXK7cytXt0majFT+BZHON8P6VRGUbey6IYywZKZGNatbELEk1Q3XwCibMTumT81ucHlZl9YUBQAkhQAAEEUCiLuMibKmk4JSSwkAVWYuoGQWg25140BdcBGJKOL1AIYQWf9BAKrtzhI0GfW6ha+hZ5wfmCckpUXuKdf6p+WSAEBJ2DVCQlZiVSUlgDKuLGbLqq0qqgkAOq\/QXP4MScv4ZdmpC94C++jwETkkQREkYobc6OksRTzLyhoAqUUVjyRs7\/fuq8WnKwAAZLLacMkNUZK4gbFpbCSxyr0X+ii2EwUAUnoNn0VJLCvKaACEsIQrkhhXFBsDgPSVdbX8QSqLe2ffpv7ZvJKA6VH2dCBICtgJISMKSMqE94oJQK8qM0Fkqf9\/Hss\/94KYRmICACQMicDlRTKn\/lRPIAqAlRg0pIgEWsmJD09fda4s8IrdPyhbVH+OQgQFAIisK99k+lF7bNQVYFezjRBQbCGPxo\/3z6moPWzqi5I8\/8lRVjRCYvsk0LfZi5Im0N6e31VlIVFm4P394+9c8CtCNWb22VzT2jZLrHonsZO7i4MivW1ZuWcm3rrtLJQxKU66M9k76lQXnhSkZKlX33Su+zM3tvOzy4HFwEo706\/S+9SMr67bsZgFV8bd\/MdNQDHE9JceDh7Rh4MLq0iJVOLoU512fOSzHGMkJo18Erq5qLV0eOnXFHX6AgCiTL9Hx0bev+dYgwhZNZM0qzZxKDJlAQCi8z3jo1wFPHOxw51gL6fkeC6\/jGH7Vs7zVZ\/dK6ABsAsem0pzR91LMAagld734vznptubkzJRk81l2FvfWvb5mYdi3w9\/HTu8mMko8eheUxjdLyUbxDGD40qyh679pY+b6mV4dbsjcEy9NDzqVGAJnwSZsZhWbWxZbMWVEAAEk\/3yWlABz6S6pqTnqJziu115FeZS18f2sYt3n7BDQIjTfPgS+8gT3URAUHn+ORaRwf6C1w1D1Y48ZknFn5\/t2uLHDDvxzuI71kYyq4A0VmZg3D1HEPo9uMx1+GDLlHH5DPnOMGyFVTE9c9K801LEXsNzS0+MvZ9gI0VMZJreOTDfIfAFLaXHi0ynrH+G373JdZp6MsDSIeaP0YmZHEpEM\/LJIG+PjE7gUsAk7BK7da94PeZSeQE3Dw7NLGCiGoLtm9jZLc+4rFdCgmN25IAXqNgk37NESJfRC7zfyjJlAADQOhWL7g6Qjdg1KFCdOXpdzFevXk208glkisfl0cos1JgbUzyb\/CxLsMqzd+S3xc1rLT0cDtIqMxGzisNCAGRNmQmY8Yxaf29RZlya5sSDCjuvYmP1atNOdyTGVQIJx1xCAsj45gKoMm18Fd0CSEGeS1EpmLnlWJkpqY1i8MuZTEs+Q\/EshF6V5VZaU2XjVcRpVWwZvAzXCmaBkzNf0X7o6T\/PfBWxt4+tulONRQGnEUKt\/bZJszI17wySZiVO\/iWt3J0OoJvy6oNCGXG19IA4TWDV9bmVdurSBIbA1Ly+CZzKVt91rIUydsxyd2y2CCnhWDVzsSA1dUvXRmMkZp7pja+cKfOnm1ZcfhU5Y1VRGvFkgNr58Br8JCzGsKAscuO8X6YbXTB+7vnunhY8\/IBTAmNY0LMHr19neqsTJziqh7dmF9Z1FWi9SRhM+8J0jQub0fKP47fqMBgMBqMEhBDdYGx\/BEEYTF\/A4LrTISAIAvDECYNpBE4JDEYOpStOFf\/88PHupxIAYAR9tOfT\/tq0fGmALCspzdq3q4nqkhiMVlB2lqAEyVcP3+D7jRk\/fmwfl\/ZbqiXMyy98ufZ6iT4+NosxSJqbOBEmXgMjpkyJ6OfWPkINAADSMmzJJxa7F\/323DClQRi9o0XXEsKH3wRZjj305uVu4bNDC\/s5mbBte838\/Ul1S2sBKmPbQBOSIAiCoDtOP1n3QBTN64M53N0r9uXhMwVGB7QgJfjR6xftePrmiX\/06szswZ8Wvn+toPTRV7T1Q2b+XazG4mHjWgCAd213wdJ8CiGEkDTv4ASb+v8wemty3+TN22K1ZUDCYJSjaUog3u31e4wmjrZ8\/Qi69On2lX\/bLl4\/q6upsfPY71f6nF+xMUbFwdu0FgBZ2t5fykMHKXwlkNUz1O\/l3wfuqlBatSniFyc\/Hd7VhsO29Bqy4txLPI9rhMHER7OUQOXX1x20Xf6JP+v1sUylnjn+3Dw01KP23d5Offq75p48m9RcRBTUAqjy8vpNFw9\/1H\/E7HWnnlU1Ps2wfbu75d24nNCSx7i0giD2j4MlY3c\/zMq8szHoxZaZy46V4ftoDTCg+GiSEqj08tqjrisWdGv4KqsoLTEdubjZ11VEWjs4QE5ymgCo9K2h5p0\/b3LCUFgLEOZv70zMfPDX54OkJ+YEB39wNEvu6Kc7O9qhtIePytrresIo4INV88KcTTi2vd5fOa2LqKSkuqN+5W2CAcVH\/ZRARWd+ONPt8zmd5VdkhbxKGWliZlw\/4NNpJKDqaiEivRZHV6atC2aqUwsAkCxzh25hk1fsu3Nno+elefP35jQ8\/I2trTiy3IyM9jpNkAxG3bIb4qVlkBM+meyM73I2wIDio267qfzja\/7p9eUs98brsUamJiSSSqR1YwISCASIMDU1Vvi6q9Ja5GrsOm\/Lp92iT18ra7CRYLFZUFVR2a5DDxLmxx5eMXF11cJvRtu1wN9h6BhIfJBiZHlb+pFui6NEtX9SeTsHN71\/zQz9X7rkyequpMPSaEltQen95Y6E56p4qaJKldciky8our7AbdivBQ221Fz60B7sP7xUo6S9CCnvi7YQRy2pvUND0B0n7M9U2EWt0fbd0To6jU9bUBtzNVNCHtHVuZ3YYw5WIIQQkjxe5U0L3PBchhBCsqytfRgen8WK1WiAXC3yO8\/cOjz8f6kNYyo8Nc2C6LzsnsL2NOhP2yLjF6VEHVo5qBON5rn8rjqdbDEdMCV0Gp+2oDbmrZ\/w0XssWjcpf\/vqo1mCqrTDn\/8vc8KPy3pprDbmp1w5du15FUKi0sQTn310PfzHBd4NZ1eSSp6AdPLwaN+3AElj2y5h09Yd3TLBoqSgGN86bIxBxEcL10CEzYTdV74g1gdZ2Q\/eZbH25h8TbAgAVPz3REuCO2hbkjpXxFRl8qk1UwOdHTwCRn8fH7zp8Mpeci+Sy17m5FOePXta6sM1G2Hu5m7vH+iLX9JVTEePj5JzSLMTJ7URXlv68Wleq6qohX9qmpXT3KvKryR0NtOQVKZfWj2y\/6IrZVSb7kdH3dE6uopPWwBamjgpg58Tc\/l0+ZTVo7Ug7JEmRsdbR8wY0E5PqANIn\/402MGYQTeycAtbeNry86M\/DbPsuEsq2seQ4qPsbUYqf+tA5y09b6VuCdPIMdsmSGM+6\/et6+GzC5pbvDWwNzMNrDsdgtqY68PcXAVU0cm92ZPWf9jszQwMRks0lxJU\/vmvp0ycOGX9rXZ83I7\/5I9NSSM2LvFr\/5MV5l+B0rOz6EXUhbgiCgBoDr3H9HVtpyFalv7oKTcwgKv6bGZgMw0D606HoDbmhhN3AzuGDKw7HYIOcy2BwegSnBIYjBw4JTAYOXBKYDBy4JTAYDAYjBIQNofrLQbWnQ4BNodjMArAKYHByKHf5nDsDcfoHP02h2NvOEbn6Lc5HHvDMTpHO+bwJs7v5pZKlJRVYh\/H3nCMbtGCORwUOL+beclQYdnm7OP64Q2vujjbiUY0gGY39+q\/XmWO+NlRB76dNaBrxL5SuWGwRT+voB+03hzevPO7MYrLNm8f1wNvOJV78YHrr6mVktpUlmX81M9m4NBgjd08BgZ6deKrj9fvOhqVxadQw80t+XkFvUGJrECxoYMq++ez2duSqxpKyaiK8x84MU2dAoZ\/uPZkMq9ZL4OSsrLE73wI7vzIemNg\/FedSfcv4l6rzSTxX\/vTu654IFGtV2gjpCVFr94YCWXZ28PtpxxXIGXTHm3aHa1Sc+lDG\/bbe0pef\/OShK+70HqsS5UhhBCV++sApsvy+61TvegG0NjQoZHzW6E4XElZpfbxOtrdGw40a1ur16GiCi6efR4eMdS8vVqjX5BGbKOGf7fg5xX0ilabw0GJ81uxOFxxWaX28fpPtbc3XA5UfPlcanjEULUmiv9CVA1w+k6rzeENeeP8Vj11bFhWpX1cL7zhdaBXV84mD4wYrAU9lWGicoDTc9RMCVR45rffd053qV1zYQ37vVB4droFq++mDPm5DOkSGMCVSdQazd+UNfLy8yRysgrr6kLFL3PBzdeb\/aYsjdQXmyIqu3o2eWDEIJwRytDo5xX0EDVTgnBYcO2NfbLe+S26t9xTvgIqP\/GF+7Dw5hZhFZQlu42d5FUUeTuTAgCgch\/cLXaPGOvz5oSEamqEhIm5uR5EtfL6uaT+k8LxMyZKUT3A6Tetf+xPlfNbnbKq7OP64Q0HAODdOPu036SBnPZuhx6jcoDTc1qdEkqc3wrF4cr94Irt4\/Xojze8OvLc07BJA3BGvAZJyvOL+FRZYaGwfg6tnZ9XaD+ULNFqxRyuLXG4Gt5w3Szk8y\/MDpx\/RdDm+0Ed5b6E6Mocu\/pxijXyj9LX9yaq4ndO62FlxHHuv+Bgsk4CpgVqY95mmmR+TkzUvRzu0AnBVq0d26UxKwNmSH578tNbzTXFwF5DM7DudAhqY95ms3OOS\/AIl2Bt1CSNO3nbdfHhPlgKi9EF7T47VwX2hmN0i56bw7E3HKNr9Nscrr433OAm3wbWnQ4BNofrNQbWnQ4BNodjMArAKYHByIFTAoORA6cEBiMHTgkMBoPBKAFhc7jeYmDd6RBgczgGowCcEhiMHHptDsficIzu0WtzOBaHY3SPXpvDsTgco3s0u5bQTPqtXh3Nb8ficIyO0SglNJZ+q1OHiu16Ig4HAGHq4Y\/D3c2ZTHOP8E+OpNWo\/oTho8wc3qFjpeTNbAU6AunzzePmnWlsF9DMiau4DuXbEUII8f6cYOa68EbzNoK2fn9feHepp8ukXY9LakTlT34b5+D1aduaf9u4O9qBKt4\/3b+bI5tgNdQk6zxW2qI25mqnRAul33Iok4yrkI+rJQ5v42NImvBVF+el0XVNkFyfax2yOUPW\/GdaRYdICYSQAnO4zmOlLUAzc7iG0m9NxOFKt9fR\/uJwANLGxenVpdOPBAAAqPxlrt3At5zwTR2ApubwDh8rJQnTnMdJ+Gznf+wshv+WLUOodP9wGhm282XdEEEV\/h5OkkP2FDX7MxON6lC5XXhiihl4L7\/X7NlXeV+0Q9XdFT5Mbv9vIl+mHvpo9s6ENpYTtXV3tIf45sfOcmcJncdKW4DGvy9Rj0bSb5V1qLFdL8ThJn3X\/nN0TO53A90GXRq0Zp5\/h3GctgMdOlYtO59pIv1WXYfq7XohDhc+v3bf6ZtTu2ZyT0\/p897hF5L2bpAe05Fj1bKU0ED6rbIONbbrgzi8\/MLCyTfCVs4YO3tPTPyekLuzp\/6cju+VKKZjx0rtlGip9FudOlTJx\/VAHC6+f+RYjZMjGwDAyGv6jh8GJEY+6li\/1KkzOnqslFxpNL68luWdmNfDxti8k1vX0Mmrjj2rbli4qROXKjoywQIsw7cmShrWqbiOZutGCEmTvutFV3V13cbXo7Kc38I59mO23y8QSETFD7ePdnlrazpehEWIEhf9GcFlhax5yq8Ph85jpS1As\/sSLUCn4vA2P4ZkxZHrpwQ5GJMk277nO2tvFrXtl9wxUkKJOVzHsdIW0KbmcJ2Lww3tNTQD606HoG3N4Vgcjumg6PtNRSwOx+gY\/TaHY3E4RufotTlcE3G4oU2+Daw7HQJsDtdrDKw7HQJsDsdgFIBTAoORA6cEBiMHTgkMBoPBKAFhTbLeYmDd6RBgTTIGowCcEhiMHDglMBg59NocjtXhGN2j1+ZwrA7H6B69NodjdThG92jFHK50uzKkxdG7l43r7Wph3GvD89pTgDL7OFaHY3RL683hzWxXCCq\/+\/1Qn4HfJndfduRR7t1PvUkV9nE9UYeL0v5eMrgzl21k6Tlw4f5Efvu2Rj9QHhONfl9Bz1DyZrba5nAV1u\/G1CSs62PMDlwRWdbgDXVV9nG11OHK+6INah58P\/XjQ3FFla+Sjn4caEJ3nXOxXJXks1W0bXe0gtKYUCWnp9p3Gr\/nGY+fc+p9d5sJR1QKUfUC0Io5XJX1Wx5J8roghlH\/7elyZnGV9nG11OFtegyJ7\/3xR6K47g9RzGfdGJYzzqpQhrQO\/U8JpTHR7PcV9AjQijlc2XaF5nDxvZ3bHrL79S7\/\/i1HE1OnPh\/seVoNyu3jrz\/X\/upwRuisWb71wjamX5AfkyD\/7bd0lMWESj1z\/Ll5aKgHCQBAdOrT3zX35NmkDrNAosH3SrLMHbqFTV6x786djZ6X5s3fm0Mp3056LY6uTFsX3PClaSr15rVCVrfAQRGbIzMyLsymHZ09fPGVKhDyKmWkidlrtTKdRgKqrha+uZwwtrbiyHIzMpoIZNsFqji\/2GzoyFD8QvgbGsRE5Qin57TWHK7O9nqokvwCcB0+bURXSyMju\/5fbv7IvfD43\/fFqu3jeqEOr0eWfuwcufSrcdz2VNTqGQ1jonqE029aaw5Xb3sthIm5GSGVyupiw\/Dr05tRw6+WqWEf1wt1OAAAUC\/\/3Bg\/cecSXyXe238j8jFp6e8r6AutNYert70Wmm\/4IIvsf27WWsYB8XkVtB59\/Fiq7eP6oA4HAABhwq4dxTO3ze2CE+I1jSDgrrMAAAFwSURBVGPS8t9X0BOUXHw3WXGqfnb56D+pPIqqefX0+Kcjx6x\/yG92u0IkqVvDONxhmx+WCXlpx+f6eM6+VIYQQlTxiXfsnKb+lcnnPT\/4rrPdOyeK5ZauePtGM2nhOwqbU4sq74u2EGccX7P5Zolu1hPbvjtaQVFMJI9XedMCNzyXIYSQLGtrH4bHZ7FixZ\/XK0CjRVgNrd8KzeEIISQrjd48tWcnY5a55+ClR9PerGM2tY+\/QS11eBsfQ6L0w8uWHcqs7Q4lLk08su3vVMW\/UqkVOkJKKIuJqhFOX9EsJVqCtszh6qnD2\/IYkqbvn+TKaDhtI1h9NrZlRuh\/SjQfk+ZGOL0FOoo5XE11uIG9mWlg3ekQdBRzOFaHY3SK3t+CxepwjG7Rb3M4VodjdI5em8M1Uocb2OTbwLrTIcDmcL3GwLrTIcDmcAxGATglMBg5cEpgMHLglMBg5MApgcFgMBglGNQiLAajFfDECYOR4\/+sGXaVSIK2qgAAAABJRU5ErkJggg==\" y=\"-1\"><\/image> <\/g> <\/svg><\/span><\/p><p>S\u1ed1 ph\u1ea7n t\u1eed c\u1ee7a m\u1eabu n = 20 .<\/p><p>Ta có <span class=\"math-tex\">$\\dfrac{n}{4}=\\dfrac{20}{4}=5$<\/span><\/p><p>Suy ra <span class=\"math-tex\">$Q_1$<\/span> thu\u1ed9c nhóm [45;50).<\/p><p><span class=\"math-tex\">$Q_1=45+(\\dfrac{5-3}{7}).5=\\dfrac{325}{7}$<\/span><\/p><p>Ta có <span class=\"math-tex\">$\\frac{3n}{4}=\\frac{3.20}{4}=15$<\/span><\/p><p>Suy ra <span class=\"math-tex\">$Q_3$<\/span> thu\u1ed9c nhóm [50;55).<\/p><p><span class=\"math-tex\">$Q_3= 50+(\\dfrac{15-10}{8}).5=\\dfrac{425}{8}$<\/span><\/p><p>Suy ra kho\u1ea3ng t\u1ee9 phân v\u1ecb: <span class=\"math-tex\">$\\Delta Q= Q_3-Q_1= \\dfrac{425}{8}- \\dfrac{325}{7}= \\dfrac{375}{56} \\approx6,7$<\/span>.<\/p><p> <\/p>","type":"choose","user_id":"156","test":"3","date":"2025-06-03 10:11:21"},{"id":"4380","test_id":"514","question":"<p>T\u1eadp nghi\u1ec7m c\u1ee7a b\u1ea5t ph\u01b0\u01a1ng trình <span class=\"math-tex\">$3^{x-2}>9$<\/span> là <br \/> <\/p>","options":["A. <span class=\"math-tex\">$(-\\infty;2)$<\/span>","B. <span class=\"math-tex\">$(4;+\\infty)$<\/span>","C. <span class=\"math-tex\">$(2;+\\infty)$<\/span>","D. <span class=\"math-tex\">$(5;+\\infty)$<\/span>"],"correct":"2","answer":"<p>\u0110áp án \u0111úng là : <span style=\"color:#27ae60;\"><strong>B. <span class=\"math-tex\">$(4;+\\infty)$<\/span><\/strong><\/span><\/p><p><span class=\"math-tex\">$3^{x-2}>9\\Leftrightarrow x-2>2\\Leftrightarrow x>4$<\/span><\/p>","type":"choose","user_id":"156","test":"1","date":"2025-06-03 10:15:07"}]}